

Pneumatic Conversion Actuators

Linear Motion. Optimized.

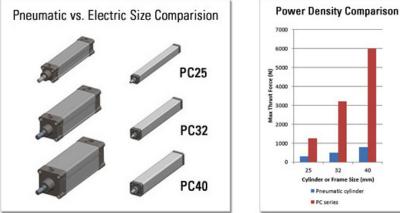
Features & Benefits

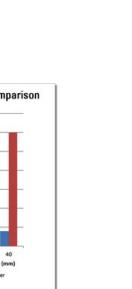
- Switch from Pneumatic to Electromechanical and experience:
 - More Flexibility
 - Higher power output
 - Increased energy efficiency
- The many advantages:
 - Faster and simpler sizing and selection
 - More predictable performance
 - Reduced service and maintenance
 - More flexible production from easier programming and positioning changes
 - More accurate moves of higher loads for the same or smaller envelope size
 - Smoother and quieter operation
 - Faster and simpler installation
 - Reduced energy costs
 - Increased reliability

Electromechanica	al Actuator vs. Pneumatic Solution	
	Electromechanical Design	Pneumatic Design
1. Actuator / cylinder 2. Cables 3. Control box 4. Servo valve 5. Regulator 6. Air hoses 7. Valve block 8. Linear scale 9. Compressor 10. Other equipment		
Controllability	$\star\star\star\star$	$\star\star$
Load	$\star\star\star$	$\star\star$
Accuracy	****	*
Speed	$\star\star\star$	****
Maintenance	***	*
Noise	***	$\star\star$
Installed Cost	**	$\star\star\star\star$
Operating Cost	***	*
Total Cost	***	$\star\star$
	Both equipments	on the images perform the same operation and are shown in the same scale

$$\begin{array}{ccc} \star & & \text{Poor} \\ \star \star & & \text{Fair} \\ \star \star \star & & \text{Good} \\ \star \star \star \star & \text{Exceller} \end{array}$$

Interchange


THOMSON"		<u>19</u> 2	·	2		
Linear Motion. Optimized.	WHY ELECTRIC?	SAVINGS ESTIMATOR	INTERCHANGE	PC BENEFITS	APPLICATIONS	CONTACT US


Home > Interchange

Simple Interchange

Thomson's PC Series of electric actuators comply to ISO 15552, a standard for metric pneumatic cylinders. This standard governs the mechanical interface dimensions of both the cylinder and its mounting accessories. Upgrading your machine to realize the benefits of electric actuation is made simple, with the following dimensions set to match ISO:

- · Frame size
- · Mounting thread size and bolt circle diameter
- Rod end and clevis interface
- Trunnion, foot and face mounting

CONTACT US

Benefit from exceptional power density in one of two ways:

1. Save valuable space in your machine using smaller frame size actuators to replace pneumatic cylinders

2. Enjoy longer life and higher reliability by taking advantage of the higher force of an electric actuator in the same frame size as your pneumatic cylinder.

Market & Applications

- Form, Fill and Seal
 - Material handling in form, fill and seal applications
 - Electromechanical actuators providing higher precision and repeatability than a pneumatic solution

Grading

Sorting arms and pushers in grading applications.
 The predictable life and minimum maintenance of an electromechanical actuator ensures minimum downtime.

Converting and Container Manufacturing

- Molding, can and box manufacturing often requires several axes in sync and operates in confined spaces.
 - Save space and installation time while improving accuracy over high speeds by switching to electromechanical solution.

 Testing and checking is essential to overall product quality. The superior accuracy and repeatability of an electromechanical actuator is a major advantage over a pneumatic solution at this critical step.

Market & Applications

Marking and Printing

 Electromechanical actuators are an ideal choice for the end of the manufacturing line, where labels and printing often takes place but no air lines may be present.

 Automation is increasing at the end of the line and the space-saving design of electromechanical actuators enable higher loads without taking up unnecessary space.

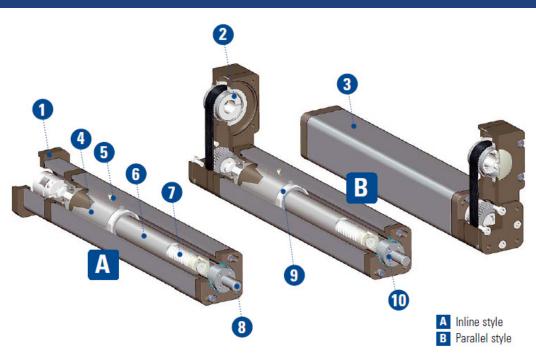
Conveying, sorting and Pick And Place

 Typical applications where requirements and variations of the products coming down the line. Electromechanical actuators allow you to change the positions quickly with a program change, instead of having to redesign or change the cylinder.

Automated Storage and Retrieval

High duty cycles in harsh environments common.
 Reduce maintenance and downtime while consuming less energy when you choose electromechanical actuators instead of pneumatic.

PC Series Brochure


PC Series Features and Benefits

- Precision screw for long life
- One point "Park-and-Lube" for quick and easy lubrication
- Stainless steel tube and hardware with smooth outer profile for washdown and harsh environment
- ISO dimension mounting pattern and rod adapter
- Preloaded molded carrier for anti-rotation and side load capabilities
- IP65 sealed for harsh environment
- AND Thomson RediMountTM System providing quick and easy motor mounting

Catalog elaborately describing the benifits and simplicity over this motor mount system

	Feature	Benefit
1	Thomson RediMount™ system motor flange	Quick and easy mounting of over 250 motors
2	Belt gear with Thomson RediMount [™] flange	Quick and easy mounting of over 250 motors
3	Smooth exterior profile	Efficient washdown
4	Precision screw	Smooth operation and long life
5	One point lubrication	Quick and easy lubrication
6	Robust stainless steel tube	Suitability for heavy loads and harsh environments
7	High precision ball nut	High repeatability and positioning accuracy
8	ISO-dimensioned male rod adapter	Simple accessory mounting
9	Preloaded single-piece molded carrier	Anti-rotation and side load capable
10	IP65 extension tube seal and guide system	Suitable for harsh environments

RediMount Motor Mounting

RediMount[™] Motor Mounting Steps

Insert motor shaft into coupling

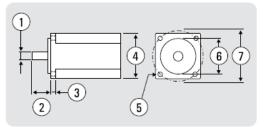
Tighten motor mounting screws

Tighten motor coupling screws and install sealing plug

- Quick and easy installation!
- RediMount motor mounting system for both inline and parallel motor mounting!

Quick and Reliable Installation

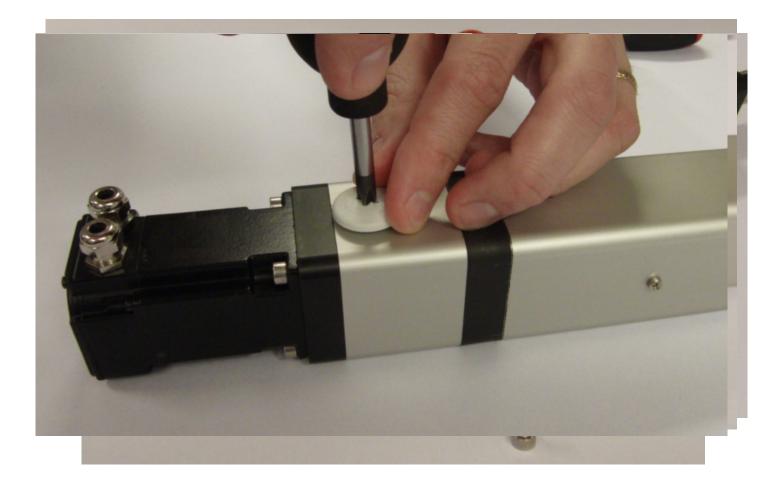
- Install in less than 5 minutes with the Thomson RediMount[™] motor mounting system
- Use your own motor! RediMount is preengineered for more than 600 different motor types and sizes
- Reduce time spent aligning the actuator and motor with the RediMount pre-aligned solution
- Easily upgrade your machine from pneumatics utilizing the PC- Series ISO standard mounting interfaces


The RediMount system makes motor mounting fast and easy

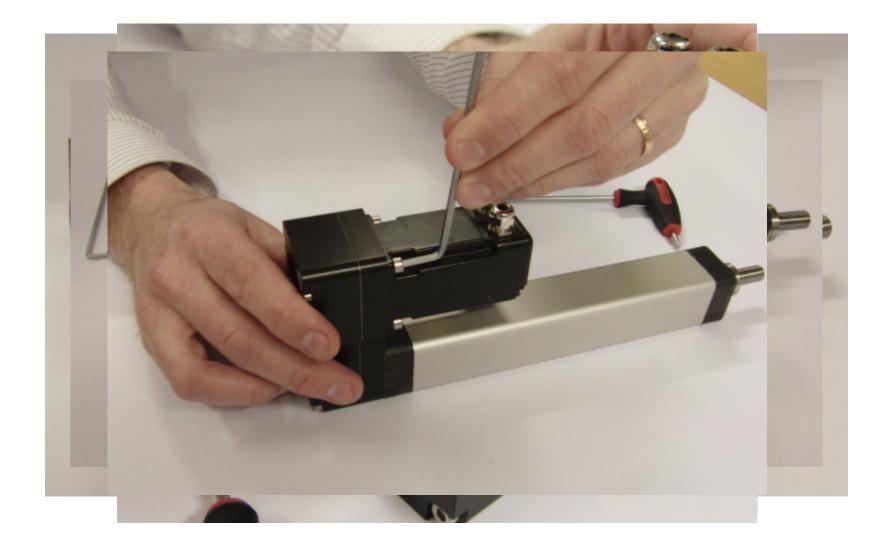
Understand the key dimensions to determine Your Motor ID!

RediMount[™] Selection

These are the key dimensions you need to know to be able to define the RediMount code and flange size for your choice of motor and PC-Series actuator.


- 1. Motor shaft diameter
- 2. Motor shaft length
- 3. Mounting flange thickness
- 4. Motor square/diameter size
- 5. Mounting bolt thru hole diameter
- 6. Motor pilot diameter
- 7. Mounting bolt circle

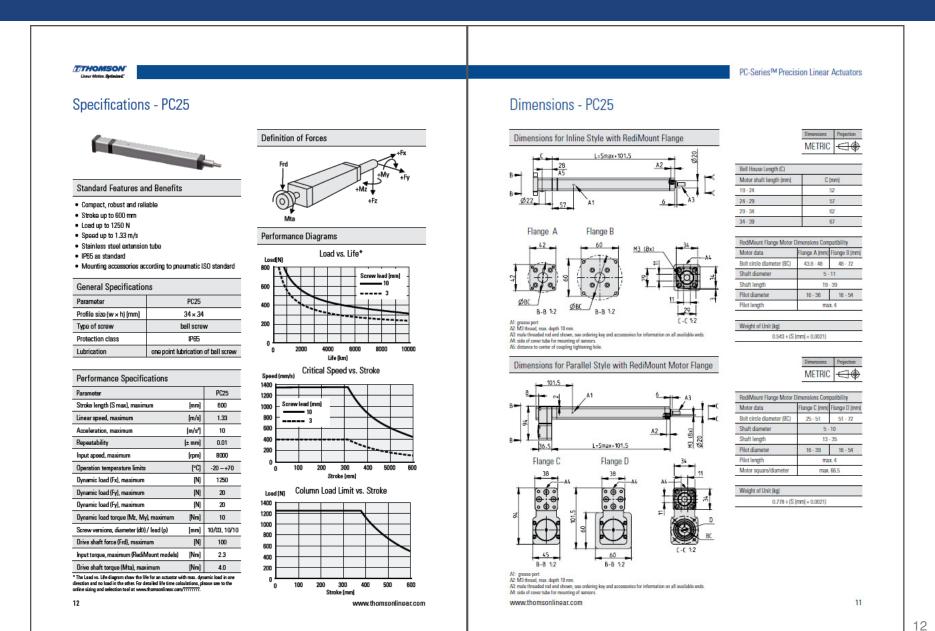
Let our online RediMount selection tool assist you! www.thomsonlinear.com/pcseries


PC Series Inline Redimount

PC Series Parallel Redimount

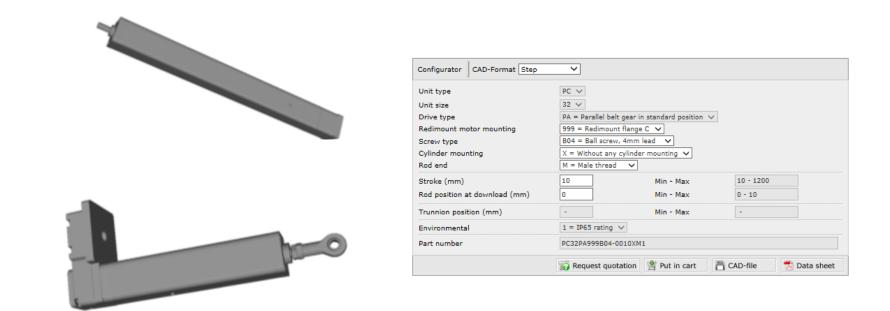
PC Series Performance Overview

Product Family Overview


The PC-Series[™] is available in three sizes (PC25, PC32 and PC40) and two styles (inline and parallel).

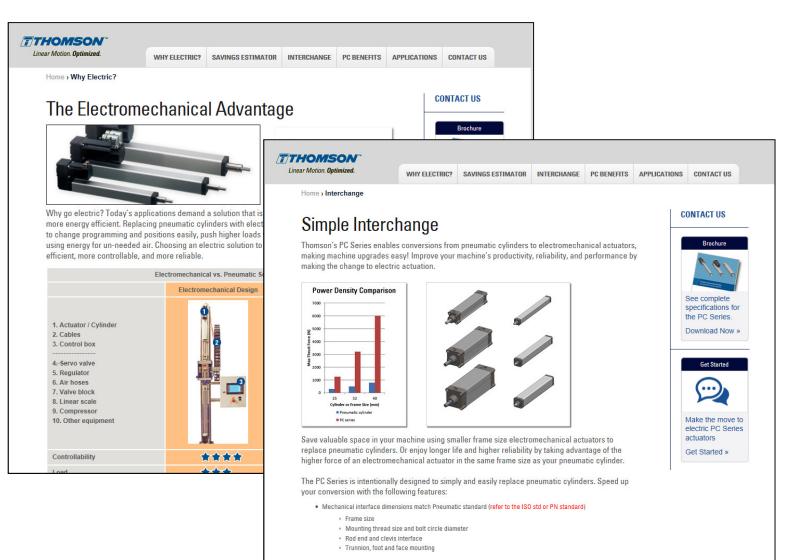
	PC25	PC32	PC40
Screw Type	ball screw	ball screw	ball screw
Max. Load (Fx)	[N] 1250	3200	6000
Max. Stroke [m	m] 600	1200	1200
Max. Speed [m	/s] 1.33	1.00	1.66
Profile Size [m	m] 34 × 34	45 × 45	55 × 55
Screw Diameter [m	m] 10	12	20
Screw Lead [m	m] 3, 10	4, 10	5, 10, 20
Protection Class [m	m] IP65	IP65	IP65

PC Series Technical Pages


PC Series Smart Part Number

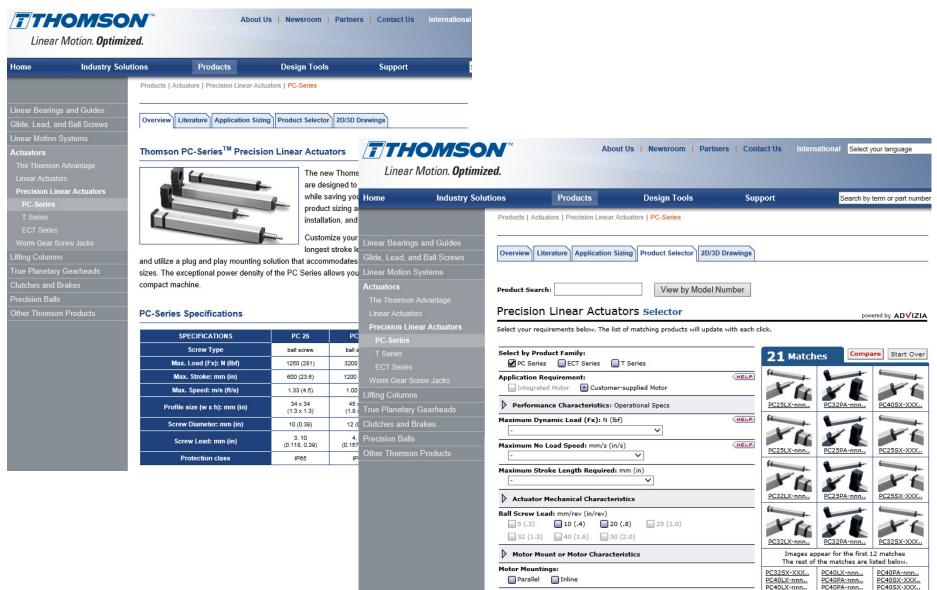
	2	3	4	5	6	7	8	9		
PC	25	LX	423	B10-	0270	Μ	J	1		
1. Actuator typ PC = PC-Series	oe s precision linear a	actuator	6. Stroke length (S max) 0000 – 9999 = distance in mm							
					7. Cylinder mounting R = rear trunnion (fixed, mounted on belt gear)					
32 = profile siz	e 45 × 45 mm				C = rear clevis		5.			
40 = profile siz	e 55 × 55 mm				F = feet kit					
3. Transmissio	n type				M = trunnion (movable) T = front trunnion (fixed, mounted on front housing)					
SX = inline style, directly coupled, no RediMount flange						P = front mounting plate				
LX = inline style, directly coupled, RediMount flange					X = without any cylinder mounting					
PA = parallel style, 1:1 belt gear in standard position										
			8. Rod end M = male thread (standard)							
4. RediMount motor flange code (1)					F = female thread (standard)					
000 – 998 = code for suitable flange when customers choice of motor is known					J = spherical joint					
999 = code used when customers choice of motor is unknown					C = front clevis					
XXX = code us	ed when unit has	no RediMount f	lange. ⁽²⁾			-				
F					9. Environmental 1 = IP65 rating (standard)					
5. Screw type B03 ball sc	and lead rew, 3 mm lead (p	ossible for PC2	5 only)		I = IP65 rating	(standard)				
	rew, 4 mm lead (p									
B05– = ball screw, 5 mm lead (possible for PC40 only) B10– = ball screw, 10 mm lead (possible for all sizes)					 See list of RediMount codes and compatable motors in table on page ???. Always use XXX in combination with transmission type SX. 					

PC Series 3D Model downloads



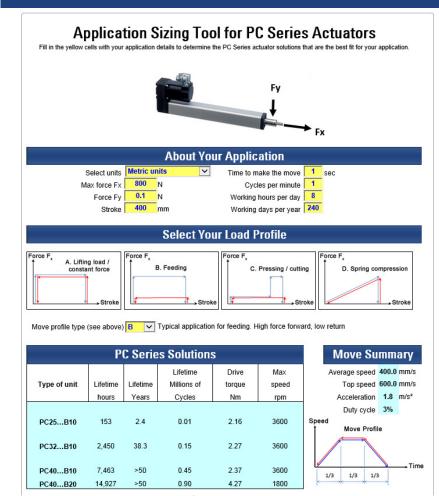
- 3D Model downloads with smart box product configurator
- Intuitive layout with smart boundaries to avoid mistakes in choosing non valid configurations!

PC Series Microsite

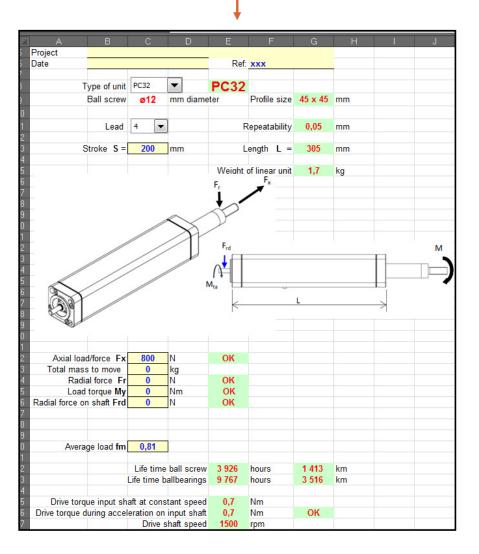


Focus on the benefits changing from Pneumatic to Electromechanical

PC Series on Thomsonlinear.com



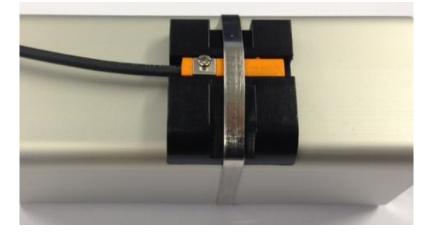
Motor Gearing:


PC Series Sizing Tools

"Customer friendly" selection tool

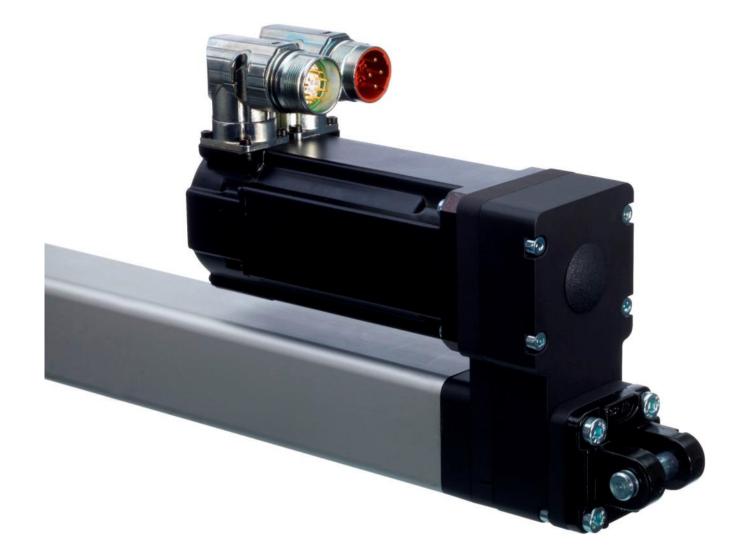
• AE sizing and selection tool

Energy savings estimator


	with your ap	plication details to see w	y Cost Estimator and Electromechanical Solut hether you can save by replacing pneumatics wi ndustrial users. To over-ride a default value, fill i	h an electr	
		About	t Your Application		
Cylinder diameter	60	mm 🗸	Cycles per minute	10	
Stroke	400	mm	Working hours	16	per day
Region or Country	Germany	~	Working days	240	per year
Currency	Euro		Default estimated cost for energy	0.1121	Euro per kWh
Default exchange rate	0.74	= 1 USD	Known cost for energy	0.0000	Euro per kWh (Use 0 for default)
Known exchange rate	0.00	= 1 USD (Use 0 for default)	Default estimated cost for air		
	0.0000	Euro / m³ (Use 0 for default)			
Pneun	natic S	olution	Electromecha	nical	
Air pressure	6	bar	Default total efficieny factor h	60%	(mechanical unit, gear, motor, drive)
Air volume	7	m³ per hour	Known efficieny factor h	0%	(Use 0 for default)
Maximum force available	1663	N forward	Force equal to pneumatic cylinder	1663	N forward
			Known required force	0	N forward (Use 0 for default)
			Rate of energy consumption	22178	Ws per minute
			Energy use estimate	1419	kWh per year
Pneumatic energy cost estimate	1,051	Euro per year	Electromechanical energy cost estimate	159	Euro per year
	Elec	tromechanical	saves 892 Euro per y	/ear	

http://www.thomsonlinear.com/micro/conversion_eng/savings_estimat_ or.html

Limit switch with holder



Questions and Answers

